organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

N-[(2S)-4-Chloro-2-(L-menthyloxy)-5oxo-2,5-dihydro-3-furyl]-L-alanine

Zhao-yang Li, Xiu-mei Song, Zhao-yang Wang* and Kai Yang

School of Chemistry and Environment, South China Normal University, Guangzhou 510006, People's Republic of China Correspondence e-mail: wangwangzhaoyang@tom.com

Received 17 March 2009; accepted 3 April 2009

Key indicators: single-crystal X-ray study: T = 293 K: mean σ (C–C) = 0.006 Å: R factor = 0.046; wR factor = 0.120; data-to-parameter ratio = 15.9.

The title compound, C₁₇H₂₆ClNO₅, was prepared via a tandem asymmetric Michael addition-elimination reaction of (5S)-3,4dichloro-5-(L-menthyloxy)furan-2(5H)-one and L-alanine in the presence of potassium hydroxide. The five-membered furanone ring is approximately planar while the six-membered menthyloxy ring adopts a chair conformation. The crystal packing is stabilized by intermolecular O-H···O and N- $H \cdots O$ hydrogen bonds.

Related literature

For chiral 5-(L-menthyloxy)furan-2(5H)-ones as key building blocks in the synthesis of supramolecules and important natural products, see: Feringa & De Jong (1988); He et al. (2006); Lattmann et al. (1999). For the use of 4-aminofuran-2(5H)-one in chemical, pharmaceutical and agrochemical research, see: Kimura et al. (2000); Tanoury et al. (2008). For a related structure, see: Wang et al. (2008). For the synthesis of the chiral synthon (5S)-3,4-dichloro-5-(L-menthyloxy)furan-2(5H)-one, see: Chen & Geng (1993).

a = 11.2481 (15) Å

b = 19.642 (2) Å

c = 9.0668 (11) Å

Experimental

Crystal data

C17H26CINO5 $M_r = 359.84$ Orthorhombic, P21212

```
V = 2003.1 (4) Å<sup>3</sup>
7 - 4
Mo K\alpha radiation
```

Data collection

Bruker APEXII area-detector
diffractometer
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
$T_{\min} = 0.761, \ T_{\max} = 0.846$
(expected range = $0.866-0.962$)

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.046$	H-atom parameters constrained
$wR(F^{-}) = 0.120$ S = 1.08	$\Delta \rho_{\text{max}} = 0.33 \text{ e A}^{-1}$ $\Delta \rho_{\text{min}} = -0.34 \text{ e Å}^{-3}$
3534 reflections	Absolute structure: Flack (1983),
222 parameters	1499 Friedel pairs
312 restraints	Flack parameter: 0.00 (10)

 $\mu = 0.21 \text{ mm}^{-1}$ T = 293 K

 $R_{\rm int} = 0.037$

 $0.30 \times 0.23 \times 0.18 \text{ mm}$

10244 measured reflections 3534 independent reflections

2879 reflections with $I > 2\sigma(I)$

Table 1 Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$N1 - H1A \cdots O5^{i}$	0.86	2.20	2.975 (4)	150
$O4-H4\cdots O3^{ii}$	0.82	1.86	2.655 (3)	164

Symmetry codes: (i) -x + 1, -y + 2, z; (ii) $-x + \frac{1}{2}$, $y + \frac{1}{2}$, -z + 1.

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97.

The work was supported by the National Natural Science Foundation of China (grant No. 20772035) and the Natural Science Foundation of Guangdong Province, China (grant No. 5300082).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BQ2134).

References

- Bruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Chen, Q. H. & Geng, Z. (1993). Acta Chim. Sin. 51, 622-624.
- Feringa, B. L. & De Jong, J. C. (1988). J. Org. Chem. 53, 1125-1128.
- Flack, H. D. (1983). Acta Cryst. A39, 876-881.
- He, L., Liu, Y. M., Li, M. & Chen, Q. H. (2006). Chem. J. Chin. Univ. 27, 464-467.
- Kimura, Y., Mizuno, T., Kawano, T., Okada, K. & Shimad, A. (2000). Phytochem. 53, 829-831.
- Lattmann, E., Billington, D. C. & Langley, C. A. (1999). Drug Des. Discov. 16, 243-250
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Tanoury, G. J., Chen, M. Z., Dong, Y., Forslund, R. E. & Magdziak, D. (2008). Org. Lett. 10, 185-188.
- Wang, Z.-Y., Song, X.-M., Cai, Y.-P. & Mao, Z.-Z. (2008). Acta Cryst. E64, o1642.

01030 Li et al

Acta Cryst. (2009). E65, o1030 [doi:10.1107/S1600536809012720]

N-[(2S)-4-Chloro-2-(L-menthyloxy)-5-oxo-2,5-dihydro-3-furyl]-L-alanine

Z. Li, X. Song, Z. Wang and K. Yang

Comment

Chiral 5-(l-menthyloxy)-2(5*H*)-furanones have been extensively utilized as key building blocks in the synthesis of supramolecules and important natural products since 1980's (Feringa *et al.*, 1988; Lattmann *et al.*, 1999), especially in asymmetric synthesis (He *et al.*, 2006). At the same time, 4-amino-2(5*H*)-furanone is an attractive moiety in chemical, pharmaceutical and agrochemical research (Kimura *et al.*, 2000; Tanoury *et al.*, 2008). Herein we report the crystal structure of the title compound *N*-[3-chloro-5-(*S*)-(l-menthyloxy)-2(5*H*)-4-furanon-yl]-*L*-alanine, namely $C_{17}H_{26}CINO_5$, obtained *via* tandem asymmetric Michael addition-elimination reaction, with chiral building blocks 3,4-dichloro-5-(*S*)-(l-menthyloxy)-2(5*H*)-furanone and *L*-alanine.

The structure of the title compound (I) is illustrated in Fig. 1. The asymmetric unit of the title compound contains two independent rings: a five-membered furanone ring and a six-membered menthyloxy ring connected each other *via* C1—O1—C11 ether bond, having five chiral centers (C1(R), C2(S), C5(R), C11(S), C15(S)). The furanone ring of O2—C14—C13—C12—C11 is approximately planar, whereas the cyclohexane ring displays a chair conformation with three substituents occupying equatorial positions. In addition, the molecules of (I) are linked by O4—H4···O3 and N1—H1A···O5 intermolecular hydrogen bonds, giving rise to three-dimensional structure (Tab. 1 and Fig. 2). The bond distances and angles are mostly in agreement with the expected values (Wang *et al.*, 2008).

Experimental

The chiral synthon 3,4-dichloro-5-(*S*)-(1-menthyloxy)-2(5*H*)-furanone was prepared according to the literature procedure (Chen *et al.*, 1993). After the mixture of *L*-alanine (0.18 g, 2.03 mmol) and potassium hydroxide (0.1274 g, 2.28 mmol) was dissolved in absolute ethyl alcohol under a nitrogen atmosphere, dichloromethane solution of 3,4-dichloro-5-(*S*)-(1-menthyloxy)-2(5*H*)-furanone (0.7494 g, 2.50 mmol) was added. The reaction was carried out under the stirring at room temperature for 24 h. Once the reaction was complete, the solvents were removed under reduced pressure. The residual solid was dissolved in dichloromethane, and the pH of the solution was adjusted to 3–4 with 15% of HCl aqueous solution. Then, the combined organic layers from extraction were concentrated under reduced pressure, and the crude product was purified by silica gel column chromatography with the gradient mixture of petroleum ether and ethyl acetate to give the product, yielding (I) 0.4348 g (59.5%). ¹H NMR δ (400 MHz, CDCl₃, TMS): 0.825–0.850 (3*H*, m, CH₃-7), 0.901–0.955 (7*H*, m, CH-8, CH₃-9, 10), 0.994–1.154 (2*H*, m, CH₂-4), 1.340–1.439 (2*H*, m, CH-5, CH-2), 1.581–1.607 (3*H*, m, CH₃-16), 1.630–1.700 (2*H*, m, CH₂-3), 2.065–2.233 (2*H*, m, CH₂-6), 3.520–3.602 (1*H*, m, CH-1), 4.771–4.864 (1*H*, m, CH-15), 5.195 (1*H*, s, NH), 5.704 (1*H*, s, CH-11), 8.950 (1*H*, s, COO-H); [α]^{20°}_D = 53.96° (c 0.467, CH₃CH₂OH); ESI-MS, m/z (%): Calcd for C₁₇H₂₇CINO₅⁺ ([*M*+H]⁺): 360.16, Found: 360.32 (95.0).

Refinement

All H atoms were positioned in calculated positions (O—H = 0.82Å; N—H = 0.86Å; C—H = 0.96Å or 0.97Å or 0.98Å) and were refined using a riding model, with $U_{iso}(H) = 1.2 U_{eq}(C)$ for methylene H atoms and $U_{iso}(H) = 1.5 U_{eq}(O)$ for methyl or hydroxyl H atoms $U_{iso}(H) = 1.2 U_{eq}(N)$ for amino H atoms.

Figures

Fig. 1. Displacement ellipsoid plot (40% probability level) of the title compound (I), with atom numbering of structurally unique non-H atoms and the H atoms.

Fig. 2. The packing diagram of the title compound (I) (viewed down the c axis).

N-[(2S)-4-Chloro-2-(L-menthyloxy)-5-oxo- 2,5-dihydro-3-furyl]-L-alanine

Crystal data	
C ₁₇ H ₂₆ ClNO ₅	$F_{000} = 768.0$
$M_r = 359.84$	$D_{\rm x} = 1.193 {\rm Mg m}^{-3}$
Orthorhombic, $P2_12_12$	Mo $K\alpha$ radiation $\lambda = 0.71073$ Å
Hall symbol: P 2 2ab	Cell parameters from 2460 reflections
a = 11.2481 (15) Å	$\theta = 2.3 - 20.5^{\circ}$
b = 19.642 (2) Å	$\mu = 0.21 \text{ mm}^{-1}$
c = 9.0668 (11) Å	T = 293 K
$V = 2003.1 (4) \text{ Å}^3$	Block, colorless
Z = 4	$0.30 \times 0.23 \times 0.18 \text{ mm}$

Data collection

Bruker APEXII area-detector diffractometer	3534 independent reflections
Radiation source: fine-focus sealed tube	2879 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.037$
T = 293 K	$\theta_{\text{max}} = 25.0^{\circ}$
ω scan	$\theta_{\min} = 2.1^{\circ}$
Absorption correction: multi-scan	$h = -13 \rightarrow 11$

(SADABS; Bruker, 2004)	
$T_{\min} = 0.761, T_{\max} = 0.846$	$k = -23 \rightarrow 2$
10244 measured reflections	$l = -10 \rightarrow 7$

Refinement

Refinement on F^2	Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: full	H-atom parameters constrained
$R[F^2 > 2\sigma(F^2)] = 0.046$	$w = 1/[\sigma^2(F_o^2) + (0.0567P)^2 + 0.3483P]$ where $P = (F_o^2 + 2F_c^2)/3$
$wR(F^2) = 0.120$	$(\Delta/\sigma)_{max} < 0.001$
<i>S</i> = 1.08	$\Delta \rho_{max} = 0.33 \text{ e} \text{ Å}^{-3}$
3534 reflections	$\Delta \rho_{min} = -0.34 \text{ e } \text{\AA}^{-3}$
222 parameters	Extinction correction: none
312 restraints	Absolute structure: Flack (1983), 1499 Friedel pairs
Primary atom site location: structure-invariant direct methods	Flack parameter: 0.00 (10)
~	

→22

Secondary atom site location: difference Fourier map

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	у	Ζ	$U_{\rm iso}*/U_{\rm eq}$
C1	0.4798 (4)	0.78198 (19)	0.8644 (4)	0.0536 (9)
H1	0.5545	0.7992	0.8232	0.064*
C2	0.4754 (4)	0.79762 (19)	1.0295 (4)	0.0619 (10)
H2	0.3996	0.7797	1.0661	0.074*
C3	0.5733 (5)	0.7571 (2)	1.1058 (6)	0.0907 (13)
H3A	0.6499	0.7742	1.0735	0.109*
H3B	0.5677	0.7645	1.2114	0.109*
C4	0.5674 (6)	0.6817 (2)	1.0753 (6)	0.0968 (14)
H4A	0.6345	0.6594	1.1219	0.116*
H4B	0.4953	0.6633	1.1185	0.116*
C5	0.5686 (6)	0.6664 (2)	0.9133 (6)	0.0897 (13)
Н5	0.6455	0.6807	0.8729	0.108*
C6	0.4707 (4)	0.70649 (18)	0.8358 (4)	0.0651 (10)

H6A	0.4756	0.6983	0.7305	0.078*
H6B	0.3940	0.6903	0.8696	0.078*
C7	0.5537 (6)	0.5895 (2)	0.8864 (7)	0.1183 (17)
H7A	0.6122	0.5650	0.9423	0.177*
H7B	0.5640	0.5799	0.7833	0.177*
H7C	0.4756	0.5756	0.9167	0.177*
C8	0.4770 (5)	0.8738 (2)	1.0660 (5)	0.0761 (12)
H8	0.4168	0.8955	1.0038	0.091*
C9	0.4415 (6)	0.8870 (3)	1.2264 (6)	0.1027 (15)
H9A	0.3749	0.8587	1.2517	0.154*
H9B	0.4200	0.9340	1.2381	0.154*
H9C	0.5072	0.8765	1.2900	0.154*
C10	0.5941 (6)	0.9084 (3)	1.0329 (7)	0.1110 (16)
H10A	0.6546	0.8904	1.0967	0.166*
H10B	0.5864	0.9565	1.0491	0.166*
H10C	0.6156	0.9001	0.9321	0.166*
C11	0.3749 (3)	0.81985 (15)	0.6456 (3)	0.0374 (7)
H11	0.4534	0.8277	0.6018	0.045*
C12	0.2880 (3)	0.87618 (15)	0.6067 (3)	0.0347 (7)
C13	0.1874 (3)	0.84593 (15)	0.5583 (4)	0.0383 (7)
C14	0.2086 (3)	0.77365 (15)	0.5426 (4)	0.0393 (7)
C15	0.2405 (3)	0.99911 (15)	0.6191 (4)	0.0427 (8)
H15	0.1863	0.9920	0.5359	0.051*
C16	0.1683 (3)	1.00945 (19)	0.7577 (5)	0.0611 (10)
H16A	0.1188	0.9704	0.7741	0.092*
H16B	0.1193	1.0492	0.7469	0.092*
H16C	0.2208	1.0154	0.8402	0.092*
C17	0.3137 (3)	1.06179 (15)	0.5905 (4)	0.0428 (8)
Cl1	0.04908 (8)	0.87823 (4)	0.51989 (12)	0.0612 (3)
N1	0.3197 (2)	0.94048 (12)	0.6313 (3)	0.0440 (7)
H1A	0.3922	0.9481	0.6563	0.053*
01	0.3799 (2)	0.81852 (11)	0.7981 (2)	0.0423 (5)
O2	0.31972 (19)	0.75881 (10)	0.5881 (3)	0.0426 (6)
O3	0.1433 (2)	0.72965 (11)	0.4945 (3)	0.0532 (6)
O4	0.2496 (2)	1.10975 (12)	0.5305 (4)	0.0780 (10)
H4	0.2919	1.1427	0.5122	0.117*
O5	0.4163 (2)	1.06720 (11)	0.6217 (3)	0.0610 (7)

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.061 (2)	0.0474 (17)	0.0526 (19)	0.0069 (16)	-0.0111 (16)	0.0100 (15)
C2	0.080 (2)	0.0552 (19)	0.051 (2)	-0.0053 (18)	-0.0131 (18)	0.0075 (17)
C3	0.120 (3)	0.078 (2)	0.074 (2)	0.009 (2)	-0.036 (2)	0.007 (2)
C4	0.135 (3)	0.074 (3)	0.081 (3)	0.019 (3)	-0.034 (3)	0.021 (2)
C5	0.127 (3)	0.065 (2)	0.077 (3)	0.031 (2)	-0.025 (3)	0.016 (2)
C6	0.094 (3)	0.0458 (19)	0.056 (2)	0.0143 (19)	-0.0131 (19)	0.0062 (16)
C7	0.181 (4)	0.075 (3)	0.099 (3)	0.046 (3)	-0.034 (3)	0.014 (3)

C8	0.102 (3)	0.064 (2)	0.062 (2)	-0.001 (2)	-0.015 (2)	-0.005 (2)
C9	0.141 (4)	0.094 (3)	0.073 (3)	-0.006 (3)	-0.003 (3)	-0.020 (3)
C10	0.137 (4)	0.090 (3)	0.107 (3)	-0.031 (3)	-0.005 (3)	-0.008 (3)
C11	0.0426 (16)	0.0299 (15)	0.0397 (18)	-0.0006 (14)	-0.0029 (14)	0.0015 (13)
C12	0.0369 (15)	0.0272 (14)	0.0401 (17)	-0.0002 (13)	0.0019 (13)	0.0026 (13)
C13	0.0395 (16)	0.0291 (14)	0.0463 (19)	0.0002 (13)	-0.0049 (14)	-0.0001 (14)
C14	0.0437 (18)	0.0324 (16)	0.0418 (19)	-0.0012 (14)	-0.0017 (14)	-0.0025 (14)
C15	0.0397 (16)	0.0267 (15)	0.061 (2)	0.0010 (13)	-0.0075 (15)	0.0044 (15)
C16	0.053 (2)	0.048 (2)	0.083 (3)	-0.0019 (17)	0.0107 (18)	0.0009 (19)
C17	0.0399 (19)	0.0279 (15)	0.061 (2)	0.0008 (14)	-0.0058 (16)	0.0032 (15)
Cl1	0.0444 (5)	0.0433 (5)	0.0960 (8)	0.0070 (4)	-0.0225 (5)	-0.0125 (5)
N1	0.0358 (15)	0.0283 (14)	0.068 (2)	-0.0006 (12)	-0.0108 (14)	0.0035 (13)
01	0.0457 (13)	0.0385 (12)	0.0426 (14)	0.0057 (10)	-0.0046 (10)	0.0046 (10)
O2	0.0428 (13)	0.0264 (11)	0.0585 (15)	0.0032 (10)	-0.0074 (10)	-0.0051 (10)
O3	0.0541 (14)	0.0321 (12)	0.0734 (17)	-0.0052 (11)	-0.0091 (13)	-0.0130 (12)
O4	0.0509 (15)	0.0357 (14)	0.147 (3)	-0.0056 (12)	-0.0219 (17)	0.0330 (18)
05	0.0410 (15)	0.0330 (12)	0.109 (2)	-0.0023 (10)	-0.0109 (14)	0.0093 (14)

Geometric parameters (Å, °)

C1—O1	1.462 (4)	С9—Н9С	0.9600
C1—C6	1.509 (5)	C10—H10A	0.9600
C1—C2	1.529 (6)	C10—H10B	0.9600
C1—H1	0.9800	C10—H10C	0.9600
C2—C3	1.524 (6)	C11—O1	1.384 (4)
C2—C8	1.532 (6)	C11—O2	1.447 (4)
С2—Н2	0.9800	C11—C12	1.518 (4)
C3—C4	1.509 (6)	C11—H11	0.9800
С3—НЗА	0.9700	C12—N1	1.331 (4)
С3—Н3В	0.9700	C12—C13	1.351 (4)
C4—C5	1.499 (8)	C13—C14	1.447 (4)
C4—H4A	0.9700	C13—Cl1	1.716 (3)
C4—H4B	0.9700	C14—O3	1.215 (4)
C5—C6	1.525 (6)	C14—O2	1.348 (4)
С5—С7	1.540 (7)	C15—N1	1.460 (4)
С5—Н5	0.9800	C15—C17	1.504 (4)
С6—Н6А	0.9700	C15—C16	1.510 (5)
С6—Н6В	0.9700	С15—Н15	0.9800
С7—Н7А	0.9600	C16—H16A	0.9600
С7—Н7В	0.9600	C16—H16B	0.9600
С7—Н7С	0.9600	C16—H16C	0.9600
C8—C10	1.512 (7)	C17—O5	1.193 (4)
C8—C9	1.530 (7)	C17—O4	1.305 (4)
С8—Н8	0.9800	N1—H1A	0.8600
С9—Н9А	0.9600	O4—H4	0.8200
С9—Н9В	0.9600		
O1—C1—C6	111.1 (3)	С8—С9—Н9А	109.5
O1—C1—C2	106.2 (3)	С8—С9—Н9В	109.5
C6—C1—C2	111.3 (3)	Н9А—С9—Н9В	109.5

01—C1—H1	109.4	С8—С9—Н9С	109.5
C6—C1—H1	109.4	Н9А—С9—Н9С	109.5
C2—C1—H1	109.4	Н9В—С9—Н9С	109.5
C3—C2—C1	108.5 (4)	C8-C10-H10A	109.5
C3—C2—C8	113.8 (4)	C8-C10-H10B	109.5
C1—C2—C8	114.0 (3)	H10A-C10-H10B	109.5
С3—С2—Н2	106.7	C8—C10—H10C	109.5
С1—С2—Н2	106.7	H10A—C10—H10C	109.5
С8—С2—Н2	106.7	H10B-C10-H10C	109.5
C4—C3—C2	113.4 (4)	O1—C11—O2	111.2 (2)
С4—С3—НЗА	108.9	O1—C11—C12	105.8 (2)
С2—С3—НЗА	108.9	O2—C11—C12	104.1 (2)
C4—C3—H3B	108.9	O1-C11-H11	111.8
С2—С3—Н3В	108.9	O2-C11-H11	111.8
НЗА—СЗ—НЗВ	107.7	C12-C11-H11	111.8
C5—C4—C3	112.1 (4)	N1—C12—C13	134.1 (3)
C5—C4—H4A	109.2	N1-C12-C11	118.7 (3)
C3—C4—H4A	109.2	C13—C12—C11	107.1 (3)
C5—C4—H4B	109.2	C12-C13-C14	109.0 (3)
C3—C4—H4B	109.2	C12—C13—Cl1	131.5 (2)
H4A—C4—H4B	107.9	C14—C13—Cl1	119.5 (2)
C4—C5—C6	109.9 (4)	O3—C14—O2	121.1 (3)
C4—C5—C7	110.5 (4)	O3—C14—C13	129.3 (3)
C6—C5—C7	110.8 (5)	O2-C14-C13	109.6 (3)
С4—С5—Н5	108.5	N1—C15—C17	109.0 (2)
С6—С5—Н5	108.5	N1—C15—C16	111.8 (3)
С7—С5—Н5	108.5	C17—C15—C16	109.1 (3)
C1—C6—C5	112.3 (4)	N1—C15—H15	109.0
С1—С6—Н6А	109.1	C17—C15—H15	109.0
С5—С6—Н6А	109.1	C16—C15—H15	109.0
C1—C6—H6B	109.1	C15—C16—H16A	109.5
С5—С6—Н6В	109.1	C15—C16—H16B	109.5
H6A—C6—H6B	107.9	H16A—C16—H16B	109.5
С5—С7—Н7А	109.5	C15—C16—H16C	109.5
С5—С7—Н7В	109.5	H16A—C16—H16C	109.5
H7A—C7—H7B	109.5	H16B—C16—H16C	109.5
С5—С7—Н7С	109.5	O5—C17—O4	124.7 (3)
H7A—C7—H7C	109.5	O5—C17—C15	124.2 (3)
Н7В—С7—Н7С	109.5	O4—C17—C15	111.1 (3)
C10—C8—C9	109.9 (4)	C12—N1—C15	124.9 (3)
C10—C8—C2	114.0 (4)	C12—N1—H1A	117.5
C9—C8—C2	111.6 (4)	C15—N1—H1A	117.5
С10—С8—Н8	107.0	C11—O1—C1	116.8 (3)
С9—С8—Н8	107.0	C14—O2—C11	109.2 (2)
С2—С8—Н8	107.0	С17—О4—Н4	109.5
O1—C1—C2—C3	176.5 (3)	N1—C12—C13—Cl1	-5.9 (6)
C6—C1—C2—C3	55.4 (5)	C11—C12—C13—Cl1	170.3 (3)
O1—C1—C2—C8	-55.6 (5)	C12—C13—C14—O3	-175.4 (3)
C6—C1—C2—C8	-176.7 (4)	Cl1—C13—C14—O3	5.8 (5)

C1—C2—C3—C4	-54.8 (6)	C12-C13-C14-O2	3.1 (4)
C8—C2—C3—C4	177.1 (4)	Cl1—C13—C14—O2	-175.7 (2)
C2—C3—C4—C5	55.4 (7)	N1-C15-C17-O5	-23.0 (5)
C3—C4—C5—C6	-53.4 (7)	C16—C15—C17—O5	99.4 (4)
C3—C4—C5—C7	-176.0 (5)	N1-C15-C17-O4	158.5 (3)
O1—C1—C6—C5	-175.7 (4)	C16—C15—C17—O4	-79.2 (4)
C2-C1-C6-C5	-57.5 (5)	C13-C12-N1-C15	4.8 (6)
C4—C5—C6—C1	55.4 (6)	C11-C12-N1-C15	-171.0 (3)
C7—C5—C6—C1	177.8 (5)	C17-C15-N1-C12	-156.0 (3)
C3—C2—C8—C10	56.0 (6)	C16—C15—N1—C12	83.2 (4)
C1—C2—C8—C10	-69.1 (5)	O2-C11-O1-C1	83.7 (3)
C3—C2—C8—C9	-69.2 (6)	C12-C11-O1-C1	-163.9 (3)
C1—C2—C8—C9	165.7 (4)	C6-C1-O1-C11	-67.5 (4)
O1-C11-C12-N1	69.8 (3)	C2-C1-O1-C11	171.3 (3)
O2-C11-C12-N1	-172.9 (3)	O3—C14—O2—C11	-177.5 (3)
O1—C11—C12—C13	-107.0 (3)	C13—C14—O2—C11	3.8 (3)
O2-C11-C12-C13	10.2 (3)	O1-C11-O2-C14	105.0 (3)
N1-C12-C13-C14	175.6 (3)	C12-C11-O2-C14	-8.4 (3)
C11—C12—C13—C14	-8.2 (4)		

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	$D\!\!-\!\!\mathrm{H}\!\cdots\!\!A$
N1—H1A···O5 ⁱ	0.86	2.20	2.975 (4)	150
O4—H4···O3 ⁱⁱ	0.82	1.86	2.655 (3)	164
Symmetry codes: (i) - <i>x</i> +1, - <i>y</i> +2, <i>z</i> ; (ii) - <i>x</i> +1/2, <i>y</i> +1/2	2, <i>-z</i> +1.			

Fig. 1

Fig. 2